mGw2 Client for Java
User Guide

CONTENTS

N | 011 o To [0 Tod 1 o] ST P PP 3
2 SEIVICE IMANAGEIS .. .cteeiieitieste et iee et te sttt et e bt be et e sbeebe st e sbeebeeneenre e e e 3
2.1 MaANAGET TYPES. ...t 3
2.2 Manager COmmON PrOPErtieScoviveiverieiieie e se e re e 3
2.3 Manager INStANTIATIONcccooiiiiiiieieee s 4
2.3.1 CoNSLruCtOr argUMENTSc.vvieiiieeiiie et 4
2.3.2 SEttING PrOPEITIEScviviiiiiiieiieieeee ettt 4
2.3.3 MIXEA oo 5

3 IMESSAGING SEIVICES.ecuieuieeeiteste ettt ettt b ettt sttt b et e bbb eneas 6
3.1 SENAING IMESSAGESveevveivieiteeiectee st ete st e s et e e ste e te e sreesaesreesraesresneesreenreas 6
311 Sending SIMS MESSAQEc.eiverieriieiieieeeee ettt 7
3.1.2 Sending MMS MESSAQEvecveiveeiieieieeite e seesteeeesraeste e sreesre e ssaenne s 7
3.1.3 Sending LOQO MESSAGEccuvrierieeiieieieente sttt 7
3.1.4 Sending RINGTONE MESSAQE.......eciveeiiirieiiieiesieeceete st e sre e sre e enne s 8
3.1.5 Sending SIMPP IMESSAJEcceeueruieieieiinie ittt sb e 8
3.1.6 Sending WAP PUSh ST IMESSAQJEccvecveiuieieiiieiieeieseesie e see e nesee s 8
3.1.7 Extensions for Sending MESSAgES.coerrererirerineeieieie e 9

3.2 Acquire Messages Delivery Statusccccocveveieeie i 9
3.3 Retrieve Messages (PUll MOdEl) ..o 10
3.4 Receive Messages (Push Model)cccccoviiiiiiiieiecie e 12
3.4.1 Install AXIS Message RECEIVETcccceiiriiiiiiieieese s 12
3.4.2 Registering Message LIStENErcccecveieevieiie e 14

4 CRArging SEIVICEScciiieieieiteite ettt bbb eneas 15
4.1 Service LIMITAtIONSoceieieiiiiiieieie e 15
4.2 Charging EXAMPIEScc.ooiiiiiiiiiiieeeee s 15
4.2.1 Charge AMOUNT.......ccciiiieiieite e se e se et sae e re e 15
4.2.2 Reserve, Commit or Release Chargeccccoevvverivereieniene e, 15

5 LOCALION SEIVICEScvieuieieieiie sttt sttt st ne e 17
51 FINdiNG USEr LOCALIONccueiiiiiiiiieiiiieiesiesie e 17

6 Manager EXCEPLIONS.......cviiiiciecie ettt ettt are s 18
LA o To [4o TP PR TP PR 18

8 AJAItIONAl NOLES ...ttt e e eeeaaaas 18

1 INTRODUCTION

Message Gateway (mGw) provides various functionalities through its remoting
services. These services use standardized or custom protocols for communication.
Examples of such protocols are SOAP for web services, SMPP and many more.
They can become too complex and cumbersome to use. mGw client is user
friendly library for communicating with mGw remoting services.

This document describes mGw2 client v1.0.6.

2 SERVICE MANAGERS

2.1 Manager Types

Different services are u via Managers. There are three Managers, each for every
service exposed by mGw remoting interfaces:

e Message Manager - sending and receiving messages
e Charging Manager - charging funds to user

e Location Manager - finding user location

Manager Interfaces and Implementations

Interface Implementation Used for

MessageManager?2 MessageManager2Impl |Sending and receiving messages

ChargingManager2 | ChargingManager2Impl Charging user with some amount

LocationManager2 |LocationManager2Impl |Finding user location

2.2 Manager Common Properties

Every type of Manager uses SOAP to communicate with mGw. There are some
common properties that each manager must set before it can communicate with
mGw.

¢ mGw service URL

To be able to communicate with mGw, manager must specify URL on which
various mGw services are exposed. This URL is actually a prefix to URL at which
services are exposed. Port name is not included in this URL, but appended
automatically by the client depending on the type of request and type of
message.

¢ Authentication

To call mGw service, manager must authenticate itself. Manager authenticates
itself with username/password pair. Every manager can set default
username/password pair used for every call. There is also copy of every call in
which new username/password pair can be specified overriding default values.

o Timeouts

Since every call is in effect network communication there are plenty of reasons
why mGw can't be reached (no network connection, firewall blocking traffic etc).
Every manager has timeout property which defines maximum time in milliseconds
waiting for mGw to send response, after which call is abandoned and exception is
thrown.

e Receive threading model

When manager receives message from mGw it has to send message to registered
listeners for processing. Since processing can take long time there are two
possibilities. To spawn a new thread and return response to mGw immediately or
to wait until processing is done and then return response to mGw. Both
possibilities have their strengths and weaknesses. It is up to developer to decide
which approach is better for him. The default operation is to spawn new thread
for processing and returning response to mGw immediately.

Common Manager Properties

Property Description

serviceURL mGw service URL

username mGw service authentication username

password mGw service authentication password

timeout connection timeout in milliseconds (default is 30,000)

threadedListener new received message spawn new thread for processing
(default is true)

NOTE: To obtain connection parameters (URL, username/password pair) contact your mGw
administrator or your mobile operator contact person.

2.3 Manager Instantiation

Before any service call can be made appropriate Manager must be instantiated.
There are several ways Manager can be instantiated.

2.3.1 Constructor arguments

Via constructor you can specify URL and username/password pair.

MessageManager2 manager = new MessageManager2lmpl(url, user, pass);

2.3.2 Setting Properties

There is also possibility to create Manager without constructor arguments and set
properties after.

MessageManager2 manager = new MessageManager2Impl();

manager .setServiceURL(url);

manager .setUsername(user);

manager . setPassword(pass);

2.3.3 Mixed

You can mix constructor arguments and setting properties. There is also
possibility to override previous settings by setting properties.

MessageManager2 manager = new MessageManager2impl(url);

manager .setUsername(user);

manager . setPassword(pass);

3 MESSAGING SERVICES

To wuse messaging services, instantiate MessageManager2Impl. This is
implementation of MessageManager2 interface that uses SOAP to call mGw
messaging services.

There is also MessageManager which is older interface now deprecated and was
used for previous version of mGw. If you already have application that uses
MessageManager it can still be used but you have to warn mGw administrator that
you are using legacy interface since legacy interfaces are configured differently on
mGw.

Use provided URL and username/password pair to instantiate
MessageManager2Impl.

String url = <provided URL>;

String user = <provided Username>;

<provided Password>;

String pass

MessageManager2 manager = new MessageManager2Impl(url, user, pass);

Message manager is configured with single URL and can be reused for complete
communication with single server. Multiple message managers can be created in
application if communication with multiple servers is required.

3.1 Sending Messages

After manager instantiation, sendMessage method is used for sending messages.
sendMessage method expected parameters are: message to send, array of
destination addresses, originator address, priority and charging.

manager . sendMessage (
message, destination, originator, priority, charging);

NOTE: See javadoc for more information about sendMessage method on
MessageManager?2 interface.

Message Sending Interfaces and Implementations

hr_tis.mgw.client.message.MessageManager?2 interface

hr.tis.mgw.client.message.MessageManager2Impl |implementation

hr._tis.mgw.client.message .MessageManager deprecated interface

hr_tis_.mgw.client.message.MessageManagerImpl deprecated
implementation

Message Types and Their Use

Message Type Use

hr.tis.mgw.client.message. SMS message up to 460 characters
SmsMessage

hr.tis.mgw.client.message. MMS message with various textual and
MmsMessage binary content

hr_tis.mgw.client.message. Black and white logo message
LogoMessage

hr.tis.mgw.client.message. Ring tone melody in RTTTL format
RingToneMessage

hr_tis.mgw.client.message. SMPP message

SmppMessage

hr.tis.mgw.client.message.wap. |Wap Push Service Indication
PushSIMessage

3.1.1 Sending SMS message

Create new SmsMessage containing message text. Priority is ignored for SMS
message. For use of charging parameter see Charging section.
SmsMessage sms = new SmsMessage(''sms message text');

manager .sendMessage(sms, destinations, originator, null, null);

3.1.2 Sending MMS Message

Create new MmsMessage containing MmsParts. MmsMessage holds subject of
message. MmsPart hold textual or binary content. Attach MmsParts to
MmsMessage. While sending specify priority of message. For use of charging
parameter see Charging section.

byte[] bytes = ... byte array of loaded JPEG image from file ...
MmsMessage mms = new MmsMessage(''subject'™);

MmsPart text = new MmsPart(*'This is text part of MMS message');
MmsPart image = new MmsPart(bytes, "image/jpeg'™);

mms . addPart(text);

mms .addPart(image);

manager .sendMessage(mms, destinations, originator, Priority.DEFAULT,
null);

Priority Values

Priority Value

Default hr_tis.mgw.client.message.Priority.DEFAULT
Low hr_tis.mgw.client.message.Priority.LOW
Normal hr_.tis.mgw.client.message.Priority.NORMAL
High hr_tis.mgw.client.message.Priority.HIGH

NOTE: Binary content in this example was JPEG image, but any type of binary content can
be used instead.

3.1.3 Sending Logo Message

Create new LogoMessage containing byte array representing image. Image can be
in one of following formats: jpeg, gif or png. The image will be adapted, resized

to logo size and colors removed to black and white. Be careful what image
resolution and how many colors it has since after adaptation result can be
unrecognizable. Since various handset models have different image encoding,
handset encoding format must be specified via format parameter. Priority is
ignored for Logo message. For use of charging parameter see Charging section.
byte[] bytes = ... byte array of loaded image from file ...
LogoMessage logo = new LogoMessage(bytes, Format.EMS);

manager .sendMessage(logo, destinations, originator, null, null);

Format Values

Sms Format

hr_tis.mgw.client.message.Format.EMS

hr_tis.mgw.client.message.Format.SMART MESSAGING

3.1.4 Sending RingTone Message

Create new RingToneMessage containing melody in RTTTL format. Since various
handset models have different ring tone encoding, handset encoding format must
be specified via format parameter. Priority is ignored for ring tone message. For
use of charging parameter see Charging section.

String ringtone = <RTTTL melody>;

manager .sendMessage(ringtone, destinations, originator, null, null);

3.1.5 Sending SMPP Message

Create new SmppMessage containing smpp message as binary byte arrays. SMPP
message must be split into appropriate chunks and placed inside binary byte
arrays in right order as would be if message is sent via smpp protocol. Originator
and destination parameters are ignored. Any value specified will not have effect
on message delivery. Originator and destination address are specified in SMPP
message content. Also priority is ignored for SmppMessage message. For use of
charging parameter see Charging section.

List content = ... byte[] containing SMPP message ...

SmppMessage smpp = new SmppMessage(content);

manager .sendMessage(smpp, null, null, null, null);

3.1.6 Sending WAP Push SI Message

Create new PushSlIMessage containing text and wuri (this is minimum
requirements). Priority is ignored for PushSIMessage message. For use of
charging parameter see Charging section.

PushSIMessage push =
new PushSIMessage(''Check this URL™, new URI('www.kapsch.net');

manager .sendMessage(push, destinations, originator, null, null);

3.1.7 Extensions for Sending Messages

Client API and ParlayX enables clients to send messages that might be forwarded
on to messaging center (SMSC) as multiple messages. This number of messages
sent to SMSC might be used for reporting and billing purposes. Also this number
might be different then the number of sending requests client perform on mGw.

To resove this issue, extensions are implemented, both in client API and on web
service interface exported by mGw.

Methods take same parameters and type of messages as described before in this
chapter. Only difference is in their return type.

manager . sendMessageWithResult(
message, destination, originator, priority, charging);

Method returns SendResult structure.

SendResult

Property Description

message ld Message ID

count Number of messages forwarded to single destination,

e.g. if long SMS sent via client is split into 3 SMS
messages when sending to SMSC, and is sent to 2
destinations, value of this parameter would be 3.

NOTE: Extension might not be supported by some operators, contact mGw administrator to
verify this.

3.2 Acquire Messages Delivery Status

To acquire message delivery status Messageld obtained after sending message is
used as parameter to getMessageDeliveryStatus method. Since message can
be sent to many destination addresses, for every address there is one
corresponding message delivery status. DeliveryStatusinfo contains
destination address and status of message.

SmsMessage sms = new SmsMessage(“text’);

Messageld mid =
manager .sendMessage(sms, destinations, originator, null, null);

DeliveryStatusinfo[] infos = manager.getMessageDeliveryStatus(mid);

Message Status

Status Value

Delivered hr._tis.mgw.client.message.Status.DELIVERED

DeliveryUncertain |hr.tis.mgw.client.message.Status.
DELIVERY_UNCERTAIN

Deliverylmpossible hr._tis.mgw.client.message.Status.
DELIVERY_IMPOSSIBLE

MessageWaiting hr_tis.mgw.client.message.Status.MESSAGE_WAITING

NOTE: See javadoc for more information about getMessageDel iveryStatus method
on MessageManager?2 interface.

3.3 Retrieve Messages (Pull Model)

Call receiveSmsMessages to retrieve SMS messages or receiveMmsMessages to
retrieve MMS messages. The maximum number of messages received is
configured on mGw so to retrieve all messages call appropriate method until no
more messages are retrieved. To retrieve messages via methods mentioned
previously you have to specify registration identifier. It is used to select route
(channel) over which message arrived.

Note that this interface is not meant for implementation of real time services, i.e.
invoking these methods every couple of milliseconds is very resource consuming
and inefficient method of receiving messages. Push model is more suited for
these types of services, because server will notify client immediately when it
becomes available.

ReceivedSms[] smses = manager.receiveSmsMessages(regld);

ReceivedSms Properties

Property Description

smsMessage Received sms

senderAddress SMS message originator address

destinationAddress SMS message destination address

registrationldentifier Rogted(channel) over which message
arrive

ReceivedMms|[] mmses = manager.receiveMmsMessages(regld);

ReceivedMms Properties

Property Description
mmsMessage Received MMS
senderAddress MMS message originator address

destinationAddress MMS message destination address

priority MMS message priority

registrationldentifier Route (channel) over which message
arrived

NOTE: See javadoc for more information about receiveSmsMessages and
receiveMmsMessages methods on MessageManager?2 interface. To find out valid
registration identifier contact mGw administrator or your mobile operator contact person.

Messages received this way include regular messages and delivery reports, i.e.
delivery reports are encoded as ReceivedSms or ReceivedMms.

Client can use MessageHelper utility class with methods for recognition and
creation of DeliveryReports.

ReceivedSms sms = smses[0];

if (MessageHelper.isDeliveryReport(sms)) {

DeliveryReport deliveryReport =
MessageHelper.createDeliveryReport(sms);

// process delivery report

} else {

// process sms

¥
Same processing can be done for ReceivedMms.

DeliveryReport

Property Description

senderAddress Delivery report sender address (equal to
destination address in original MT
message)

destinationAddress Delivery report destination address

(short code)

messageld Message ID (equal to mesage ID
received when sending original MT
message)

registrationld Registration ID.

status Message delivery status (see 3.2).

3.4 Receive Messages (Push Model)

To receive messages one has to use servlet container and in it define AXIS
message receiver. All received messages will be sent to MessageManager2 which
will decide depending or registration to which listener message is to be routed for
processing. If registered listener can't be found, message will be silently rejected.
Only entry in log (if enabled) will be indication of message rejection. Client has to
implement interface MessagelL istener2 and register itself to MessageManager?2.

MessageListener2 methods

Method Action

smsReceived(ReceivedSms sms) Called when SMS message is received
mmsReceived(ReceivedMms mms) Called when MMS message is received
deliveryReportReceived(Called when delivery report is received

DeliveryReport report)

longSmsReceived(Called when long SMS segment is
ReceivedLongSmsSegment seg) |received

Delivery reports are always delivered in separate callback, i.e. smsReceived and
mmsReceived always receive regular messages.

NOTE: longSmsReceived is ParlayX extension and might not be supported by operator.

ReceivedLongSmsSegment

Property Description
registrationldentifier Registration identifier.
text Message text (single segment in

concatenation).

senderAddress Sender address.
destinationAddress Destination address.
sarMsgRefNum SAR (segmentation and assembly)

message reference - uniquelly identifies
concatenation for given sender.

sarTotalSegments Total number of SAR segments for given
concatenation.

sarSegmentSegNum Index of current segment in
concatenation. Starts with 1, maximum
value 255.

NOTE: See Retrieve Messages chapter for descriptions of ReceivedSms and
ReceivedMms structures or consult javadoc.

3.4.1 Install AXIS Message Receiver

First you have to choose servlet container. In following text Apache Tomcat
version 5 will be assumed, but the same should apply to any other servlet

container. In web application which will receive messages add to web.xml file
following:

<listener>

<listener-class>
org.apache.axis.transport.http.AxisHTTPSessionListener
</listener-class>

</listener>

<servlet>
<servlet-name>AxisServlet</servlet-name>
<display-name>Apache-Axis Servlet</display-name>

<servlet-class>
org.apache.axis.transport_http.AxisServlet
</servlet-class>

</servilet>

<servlet-mapping>
<servlet-name>AxisServlet</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

<session-config>
<session-timeout>30</session-timeout>
</session-config>

<mime-mapping>
<extension>wsdl</extension>
<mime-type>text/xml</mime-type>

</mime-mapping>

<mime-mapping>
<extension>xsd</extension>
<mime-type>text/xml</mime-type>

</mime-mapping>

It will register AXIS servlet to listen on /services servlet path for incoming
messages. Copy server-config.wsdd file to WEB-INF directory of your web
application. File can be found in resource directory of mGw client library. You can
also find web.xml example file in the same directory. Copy content of mGw library
lib directory to yours web application WEB-INF/lib directory. All dependencies
needed by mGw client can be found in this directory.

Start your servlet container and check if installation was successful. Open
http://<host>:<port>/<context>/services/SmsNotificationPort URL in
your browser and you should see text on screen indicating AXIS service.

3.4.2 Registering Message Listener

Assuming you have implemented MessagelL istener?2 interface the next step is to
register your message listener. Listener is registered via
registerMessagelListener method on MessageManager?2 interface. There are two
methods for registering listeners, one that use default username/password pair
for authentication and one where you can specify username/password pair for
authentication.

It is important to understand how messages are received and when and why
username/password pair is used for authentication.

e receiving SMS message

The whole message containing text is received when request from mGw is
accepted on client side.

e receiving MMS message

Only message reference is received when request from mGw is accepted on client
side. To get content of MMS message client library must call mGw service with
received reference to retrieve message content. When this call is made,
username/password pair is used for authentication. Note that if MMS contains
only single content part and this part is text, then text is pushed from server in
notification and additional request from client to server to retrieve content is not
required.

To register listener you have to specify registration identifier that represents
route (channel) over which message arrived. To receive messages delivered via
any route (channel) use constant MessageManager2.REG_I1D_ANY.

String regld = MessageManager2.REG_ID_ANY;
MessagelListener2 listener = new YourMessageListenerimplementation();

manager .registerMessagelListener(regld, listener);

Multiple MessagelListener2 instances can be registered with single
MessageManager2Impl, with different registration ID. This way, client can use
separate listener for messages with different short code.

Note that all parameters provided in notification callbacks (ReceivedSms,
ReceivedMms, DeliveryReport and ReceivedlLongSmsSegment) also contain
registrationld value. This way, single listener can be used to receive all
messages and be processed by partner in some arbitrary way.

Multiple MessageManager2Impl instances can be created in application, for
instance if partner wants to communicate with multiple servers, hosted at
different OPCOs.

Note that single listener can be registered multiple times with single or multiple
MessageManager2Impl instances, but each time with different registrationld.
Client API will use registration ID value to route the request to appropriate
listener. Registering another listener with same registration ID overwrites
previous registration and new listener will receive callbacks for this registration
ID. Registration ID is not scoped per message manager instance but should be
unique in client API (i.e. in general case it's not possible to receive notifications
from different operators with same registration ID).

NOTE: See javadoc for more information about MessageListener?2 interface and
receiveMmsMessages methods on MessageManager?2 interface. To find out valid
registration identifier contact mGw administrator or your mobile operator contact person.

4 CHARGING SERVICES

To use charging services, instantiate ChargingManager2Impl. This is
implementation of ChargingManager?2 interface that uses SOAP to invoke mGw
charging services.

Use provided URL and username/password pair to instantiate
ChargingManager2Impl.

String url = <provided URL>;

String user = <provided Username>;

String pass = <provided Password>;

ChargingManager2 manager = new ChargingManager2impl(url, user, pass);

4.1 Service Limitations

ChargingManager?2 interface provides many methods for charging funds to user.
Not all methods have to be supported by your mobile operator. If unsupported
method is called, mGw will throw exception that will be propagated to client.

NOTE: To find out which methods are supported contact your mGw administrator or your
mobile operator contact person.

4.2 Charging Examples

In following examples only commonly used methods by mobile operators will be
shown. Thus only amount charging will be shown. Some parameters to methods
can be used differently than mentioned, depending on mobile operator billing
system capabilities.

4.2.1 Charge Amount

This is most simple example that will charge funds to user. Additional parameters
(billingText and referenceCode) may be left empty if not desired by mobile
operator or may be used for different purpose again depending on mobile
operator.

String user = <user>;

BigDecimal amount = <amount>;

String billingText = <text to appear on bill>;

String referenceCode = <unique request identifier>;

manager .chargeAmount(user, amount, billingText, referenceCode);

4.2.2 Reserve, Commit or Release Charge

More complex example involving amount reservation, sending message and
commit or release of reservation depending on successful message delivery.
Additional parameters have same restrictions or use as in simple charge amount
example.

String user = <user>;

BigDecimal amount = <amount>;

String billingText = <text to appear on bill>;

String referenceCode = <unique request identifier>;

Charging charging =
chargingManager .reserveAmount(user, amount, billingText);

String[] destination = new String[] {user};
String originator = <originator>;
SmsMessage sms = new SmsMessage(‘“‘sms message text”);

Messageld mid =
messageManager . sendMessage(
sms, destination, originator, null, charging);

NOTE: Notice usage of charging parameter when sending message. This will link charging
information with sent message.

chargingManager .chargeAmountReservation(
charging, amount, billingText, referenceCode);

Or if message was not sent successfully.

chargingManager.releaseAmountReservation(charging);

For description of all others methods on ChargingManager?2 interfaces please
consult javadoc.

5 LOCATION SERVICES

To wuse location services, instantiate LocationManager2Impl. This is
implementation of LocationManager2 interface that uses SOAP to call mGw
location services.

Use provided URL and username/password pair to instantiate
LocationManager2Impl.

String url = <provided URL>;
String user = <provided Username>;
String pass = <provided Password>;

LocationManager2 manager = new LocationManager2Impl(url, user, pass);

5.1 Finding User Location

To find user location, call getLocation method. Requester parameter can be left
empty. Effect of accuracy values on result depends on mobile operator
infrastructure. Result of method call is location which contains user longitude,
latitude, accuracy of result and time of result.

String user = <user>;

String requester = <requester>;

Accuracy accuracy = Accuracy.MEDIUM;

Location location manager .getLocation(user, requester, accuracy);

Accuracy Values

Accuracy Value

Low accuracy hr_tis.mgw.client.location.Accuracy.LOW
Medium accuracy hr_tis.mgw.client.location.Accuracy.MEDIUM
High accuracy hr_tis.mgw.client. location.Accuracy.HIGH

Location Properties

Property Description

longitude User location longitude
latitude User location latitude
accuracy Accuracy of result values

time Time when measurement was made

6 MANAGER EXCEPTIONS

Every method in every manager throws exceptions. There is one root generic
exception GatewayException which covers all different exceptions thrown. This
way only one exception needs to be catched. If desired sub exceptions can be
catched explicitly. To view all possible exceptions look at the
hr_tis.mgw.client.exceptions package in javadoc. The exceptions correspond
to ParlayX exceptions. For understanding of exceptions types and usage read
ParlayX for web services manual.

Usually Encountered Exceptions

Exception Description

MServiceException | Thrown when mGw is unable to process request. See
exception message for reason.

MPolicyException Thrown when authentication has failed. Check
username/password pair.

MRemoteException Thrown when remote call to mGw failed (network
problem).

GatewayException Generic root exception.

7 LOGGING

Logging library used is Apache Jakarta Commons-Logging

(http://jakarta.apache.org/commons/logging). Library is actually a wrapper
around logging framework such as JDK's java.util.logging or Apache Log4]
(http://logging.apache.org/log4j). Throughout the Ilibrary logging is used
extensively so be careful on level of logging used. We recommend INFO level
since library was tested thoroughly and there is no need for you to test it again. It
is also recommended to disable AXIS logging since it produce are lot of debug. In
Log4] to set recommended logging level for library use following entries:

log4j -logger_hr.tis.mgw.client = INFO
log4j -logger.org.apache.axis = FATAL

8 ADDITIONAL NOTES

In library distribution you can find working samples that covers common usage of
library. Please read README files in samples directory for instructions on how to
use samples.

