
 
 
 
 
 

mGw2 Client for Java 
User Guide 

 
 
  



CONTENTS 
1  Introduction ............................................................................................................ 3 
2  Service Managers ................................................................................................... 3 

2.1  Manager Types ............................................................................................... 3 
2.2  Manager Common Properties ........................................................................ 3 
2.3  Manager Instantiation .................................................................................... 4 

2.3.1  Constructor arguments ............................................................................. 4 
2.3.2  Setting Properties ..................................................................................... 4 
2.3.3  Mixed ....................................................................................................... 5 

3  Messaging Services ................................................................................................ 6 
3.1  Sending Messages .......................................................................................... 6 

3.1.1  Sending SMS message ............................................................................. 7 
3.1.2  Sending MMS Message ........................................................................... 7 
3.1.3  Sending Logo Message ............................................................................ 7 
3.1.4  Sending RingTone Message ..................................................................... 8 
3.1.5  Sending SMPP Message .......................................................................... 8 
3.1.6  Sending WAP Push SI Message .............................................................. 8 
3.1.7  Extensions for Sending Messages ............................................................ 9 

3.2  Acquire Messages Delivery Status ................................................................ 9 
3.3  Retrieve Messages (Pull Model) .................................................................. 10 
3.4  Receive Messages (Push Model) ................................................................. 12 

3.4.1  Install AXIS Message Receiver ............................................................. 12 
3.4.2  Registering Message Listener ................................................................ 14 

4  Charging Services ................................................................................................ 15 
4.1  Service Limitations ...................................................................................... 15 
4.2  Charging Examples ...................................................................................... 15 

4.2.1  Charge Amount ...................................................................................... 15 
4.2.2  Reserve, Commit or Release Charge ..................................................... 15 

5  Location Services ................................................................................................. 17 
5.1  Finding User Location ................................................................................. 17 

6  Manager Exceptions ............................................................................................. 18 
7  Logging ................................................................................................................ 18 
8  Additional Notes .................................................................................................. 18 
 

 
  



1 INTRODUCTION 

Message Gateway (mGw) provides various functionalities through its remoting 
services. These services use standardized or custom protocols for communication. 
Examples of such protocols are SOAP for web services, SMPP and many more. 
They can become too complex and cumbersome to use. mGw client is user 
friendly library for communicating with mGw remoting services. 

This document describes mGw2 client v1.0.6. 

2 SERVICE MANAGERS 

2.1 Manager Types 

Different services are u via Managers. There are three Managers, each for every 
service exposed by mGw remoting interfaces: 

• Message Manager – sending and receiving messages 

• Charging Manager – charging funds to user 

• Location Manager – finding user location 

Manager Interfaces and Implementations 

Interface Implementation Used for

MessageManager2 MessageManager2Impl Sending and receiving messages

ChargingManager2 ChargingManager2Impl Charging user with some amount

LocationManager2 LocationManager2Impl Finding user location 

2.2 Manager Common Properties 

Every type of Manager uses SOAP to communicate with mGw. There are some 
common properties that each manager must set before it can communicate with 
mGw. 

• mGw service URL 

To be able to communicate with mGw, manager must specify URL on which 
various mGw services are exposed. This URL is actually a prefix to URL at which 
services are exposed. Port name is not included in this URL, but appended 
automatically by the client depending on the type of request and type of 
message. 

• Authentication 

To call mGw service, manager must authenticate itself. Manager authenticates 
itself with username/password pair. Every manager can set default 
username/password pair used for every call. There is also copy of every call in 
which new username/password pair can be specified overriding default values. 

• Timeouts 

Since every call is in effect network communication there are plenty of reasons 
why mGw can't be reached (no network connection, firewall blocking traffic etc). 
Every manager has timeout property which defines maximum time in milliseconds 
waiting for mGw to send response, after which call is abandoned and exception is 
thrown. 
  



• Receive threading model 

When manager receives message from mGw it has to send message to registered 
listeners for processing. Since processing can take long time there are two 
possibilities. To spawn a new thread and return response to mGw immediately or 
to wait until processing is done and then return response to mGw. Both 
possibilities have their strengths and weaknesses. It is up to developer to decide 
which approach is better for him. The default operation is to spawn new thread 
for processing and returning response to mGw immediately. 

Common Manager Properties 

Property Description

serviceURL mGw service URL

username mGw service authentication username

password mGw service authentication password

timeout connection timeout in milliseconds (default is 30,000) 

threadedListener new received message spawn new thread for processing 
(default is true) 

NOTE: To obtain connection parameters (URL, username/password pair) contact your mGw 
administrator or your mobile operator contact person. 

2.3 Manager Instantiation 
Before any service call can be made appropriate Manager must be instantiated. 
There are several ways Manager can be instantiated. 

2.3.1 Constructor arguments 

Via constructor you can specify URL and username/password pair. 

MessageManager2 manager = new MessageManager2Impl(url, user, pass); 

2.3.2 Setting Properties 

There is also possibility to create Manager without constructor arguments and set 
properties after. 

MessageManager2 manager = new MessageManager2Impl(); 

manager.setServiceURL(url); 

manager.setUsername(user); 

manager.setPassword(pass); 

  



2.3.3 Mixed 

You can mix constructor arguments and setting properties. There is also 
possibility to override previous settings by setting properties. 

MessageManager2 manager = new MessageManager2Impl(url); 

manager.setUsername(user); 

manager.setPassword(pass); 

  



3 MESSAGING SERVICES 

To use messaging services, instantiate MessageManager2Impl. This is 
implementation of MessageManager2 interface that uses SOAP to call mGw 
messaging services.  

There is also MessageManager which is older interface now deprecated and was 
used for previous version of mGw. If you already have application that uses 
MessageManager it can still be used but you have to warn mGw administrator that 
you are using legacy interface since legacy interfaces are configured differently on 
mGw. 

Use provided URL and username/password pair to instantiate 
MessageManager2Impl. 

String url = <provided URL>; 

String user = <provided Username>; 

String pass = <provided Password>; 

MessageManager2 manager = new MessageManager2Impl(url, user, pass); 

Message manager is configured with single URL and can be reused for complete 
communication with single server. Multiple message managers can be created in 
application if communication with multiple servers is required. 

3.1 Sending Messages 

After manager instantiation, sendMessage method is used for sending messages. 
sendMessage method expected parameters are: message to send, array of 
destination addresses, originator address, priority and charging. 

manager.sendMessage( 
 message, destination, originator, priority, charging); 

NOTE: See javadoc for more information about sendMessage method on 
MessageManager2 interface. 

Message Sending Interfaces and Implementations 

hr.tis.mgw.client.message.MessageManager2 interface

hr.tis.mgw.client.message.MessageManager2Impl implementation 

hr.tis.mgw.client.message.MessageManager deprecated interface 

hr.tis.mgw.client.message.MessageManagerImpl deprecated 
implementation 

Message Types and Their Use 

Message Type Use

hr.tis.mgw.client.message. 
SmsMessage 

SMS message up to 460 characters 

hr.tis.mgw.client.message. 
MmsMessage 

MMS message with various textual and 
binary content 



hr.tis.mgw.client.message. 
LogoMessage 

Black and white logo message 

hr.tis.mgw.client.message. 
RingToneMessage 

Ring tone melody in RTTTL format 

hr.tis.mgw.client.message. 
SmppMessage 

SMPP message

hr.tis.mgw.client.message.wap. 
PushSIMessage 

Wap Push Service Indication 

3.1.1 Sending SMS message 

Create new SmsMessage containing message text. Priority is ignored for SMS 
message. For use of charging parameter see Charging section. 

SmsMessage sms = new SmsMessage("sms message text"); 

manager.sendMessage(sms, destinations, originator, null, null); 

3.1.2 Sending MMS Message 

Create new MmsMessage containing MmsParts. MmsMessage holds subject of 
message. MmsPart hold textual or binary content. Attach MmsParts to 
MmsMessage. While sending specify priority of message. For use of charging 
parameter see Charging section. 

byte[] bytes = ... byte array of loaded JPEG image from file ... 

MmsMessage mms = new MmsMessage("subject"); 

MmsPart text = new MmsPart("This is text part of MMS message"); 

MmsPart image = new MmsPart(bytes, "image/jpeg"); 

mms.addPart(text); 

mms.addPart(image); 

manager.sendMessage(mms, destinations, originator, Priority.DEFAULT, 
null); 

Priority Values 

Priority Value

Default hr.tis.mgw.client.message.Priority.DEFAULT 

Low hr.tis.mgw.client.message.Priority.LOW 

Normal hr.tis.mgw.client.message.Priority.NORMAL 

High hr.tis.mgw.client.message.Priority.HIGH 

NOTE: Binary content in this example was JPEG image, but any type of binary content can 
be used instead. 

3.1.3 Sending Logo Message 

Create new LogoMessage containing byte array representing image. Image can be 
in one of following formats: jpeg, gif or png. The image will be adapted, resized 



to logo size and colors removed to black and white. Be careful what image 
resolution and how many colors it has since after adaptation result can be 
unrecognizable. Since various handset models have different image encoding, 
handset encoding format must be specified via format parameter. Priority is 
ignored for Logo message. For use of charging parameter see Charging section. 

byte[] bytes = ... byte array of loaded image from file ... 

LogoMessage logo = new LogoMessage(bytes, Format.EMS); 

manager.sendMessage(logo, destinations, originator, null, null); 

Format Values 

Sms Format 

hr.tis.mgw.client.message.Format.EMS 

hr.tis.mgw.client.message.Format.SMART_MESSAGING 

3.1.4 Sending RingTone Message 

Create new RingToneMessage containing melody in RTTTL format. Since various 
handset models have different ring tone encoding, handset encoding format must 
be specified via format parameter. Priority is ignored for ring tone message. For 
use of charging parameter see Charging section. 

String ringtone = <RTTTL melody>; 

manager.sendMessage(ringtone, destinations, originator, null, null); 

3.1.5 Sending SMPP Message 

Create new SmppMessage containing smpp message as binary byte arrays. SMPP 
message must be split into appropriate chunks and placed inside binary byte 
arrays in right order as would be if message is sent via smpp protocol. Originator 
and destination parameters are ignored. Any value specified will not have effect 
on message delivery. Originator and destination address are specified in SMPP 
message content. Also priority is ignored for SmppMessage message. For use of 
charging parameter see Charging section. 

List content = ... byte[] containing SMPP message ... 

SmppMessage smpp = new SmppMessage(content); 

manager.sendMessage(smpp, null, null, null, null); 

3.1.6 Sending WAP Push SI Message 

Create new PushSIMessage containing text and uri (this is minimum 
requirements). Priority is ignored for PushSIMessage message. For use of 
charging parameter see Charging section. 

PushSIMessage push =  
 new PushSIMessage("Check this URL", new URI("www.kapsch.net"); 

manager.sendMessage(push, destinations, originator, null, null); 



3.1.7 Extensions for Sending Messages 

Client API and ParlayX enables clients to send messages that might be forwarded 
on to messaging center (SMSC) as multiple messages. This number of messages 
sent to SMSC might be used for reporting and billing purposes. Also this number 
might be different then the number of sending requests client perform on mGw. 

To resove this issue, extensions are implemented, both in client API and on web 
service interface exported by mGw. 

Methods take same parameters and type of messages as described before in this 
chapter. Only difference is in their return type. 

manager.sendMessageWithResult( 
 message, destination, originator, priority, charging); 

Method returns SendResult structure. 

SendResult 

Property Description

messageId Message ID

count Number of messages forwarded to single destination, 
e.g. if long SMS sent via client is split into 3 SMS 
messages when sending to SMSC, and is sent to 2 
destinations, value of this parameter would be 3. 

NOTE: Extension might not be supported by some operators, contact mGw administrator to 
verify this. 

3.2 Acquire Messages Delivery Status 

To acquire message delivery status MessageId obtained after sending message is 
used as parameter to getMessageDeliveryStatus method. Since message can 
be sent to many destination addresses, for every address there is one 
corresponding message delivery status. DeliveryStatusInfo contains 
destination address and status of message. 

SmsMessage sms = new SmsMessage(“text”); 

MessageId mid =  
 manager.sendMessage(sms, destinations, originator, null, null); 

DeliveryStatusInfo[] infos = manager.getMessageDeliveryStatus(mid); 

  



Message Status 

Status Value 

Delivered hr.tis.mgw.client.message.Status.DELIVERED 

DeliveryUncertain hr.tis.mgw.client.message.Status. 
DELIVERY_UNCERTAIN 

DeliveryImpossible hr.tis.mgw.client.message.Status. 
DELIVERY_IMPOSSIBLE 

MessageWaiting hr.tis.mgw.client.message.Status.MESSAGE_WAITING 

NOTE: See javadoc for more information about getMessageDeliveryStatus method 
on MessageManager2 interface. 

3.3 Retrieve Messages (Pull Model) 

Call receiveSmsMessages to retrieve SMS messages or receiveMmsMessages to 
retrieve MMS messages. The maximum number of messages received is 
configured on mGw so to retrieve all messages call appropriate method until no 
more messages are retrieved. To retrieve messages via methods mentioned 
previously you have to specify registration identifier. It is used to select route 
(channel) over which message arrived. 

Note that this interface is not meant for implementation of real time services, i.e. 
invoking these methods every couple of milliseconds is very resource consuming 
and inefficient method of receiving messages. Push model is more suited for 
these types of services, because server will notify client immediately when it 
becomes available. 

ReceivedSms[] smses = manager.receiveSmsMessages(regId); 

ReceivedSms Properties 

Property Description

smsMessage Received sms

senderAddress SMS message originator address 

destinationAddress SMS message destination address 

registrationIdentifier Route (channel) over which message 
arrived 

ReceivedMms[] mmses = manager.receiveMmsMessages(regId); 

ReceivedMms Properties 

Property Description

mmsMessage Received MMS

senderAddress MMS message originator address 

destinationAddress MMS message destination address 



priority MMS message priority

registrationIdentifier Route (channel) over which message 
arrived 

NOTE: See javadoc for more information about receiveSmsMessages and 
receiveMmsMessages methods on MessageManager2 interface. To find out valid 
registration identifier contact mGw administrator or your mobile operator contact person. 

Messages received this way include regular messages and delivery reports, i.e. 
delivery reports are encoded as ReceivedSms or ReceivedMms. 

Client can use MessageHelper utility class with methods for recognition and 
creation of DeliveryReports. 

ReceivedSms sms = smses[0]; 

if (MessageHelper.isDeliveryReport(sms)) { 

 DeliveryReport deliveryReport =  
  MessageHelper.createDeliveryReport(sms); 

 // process delivery report 

} else { 

 // process sms 

} 

Same processing can be done for ReceivedMms. 

DeliveryReport 

Property Description

senderAddress Delivery report sender address (equal to 
destination address in original MT 
message) 

destinationAddress Delivery report destination address 
(short code) 

messageId Message ID (equal to mesage ID 
received when sending original MT 
message) 

registrationId Registration ID.

status Message delivery status (see 3.2). 

 

  



3.4 Receive Messages (Push Model) 
To receive messages one has to use servlet container and in it define AXIS 
message receiver. All received messages will be sent to MessageManager2 which 
will decide depending or registration to which listener message is to be routed for 
processing. If registered listener can't be found, message will be silently rejected. 
Only entry in log (if enabled) will be indication of message rejection. Client has to 
implement interface MessageListener2 and register itself to MessageManager2.  

MessageListener2 methods 
Method Action

smsReceived(ReceivedSms sms) Called when SMS message is received 

mmsReceived(ReceivedMms mms) Called when MMS message is received 

deliveryReportReceived( 
 DeliveryReport report) 

Called when delivery report is received

longSmsReceived( 
 ReceivedLongSmsSegment seg) 

Called when long SMS segment is 
received 

Delivery reports are always delivered in separate callback, i.e. smsReceived and 
mmsReceived always receive regular messages. 

NOTE: longSmsReceived is ParlayX extension and might not be supported by operator.  

ReceivedLongSmsSegment 

Property Description

registrationIdentifier Registration identifier.

text Message text (single segment in 
concatenation). 

senderAddress Sender address.

destinationAddress Destination address.

sarMsgRefNum SAR (segmentation and assembly) 
message reference – uniquelly identifies 
concatenation for given sender.  

sarTotalSegments Total number of SAR segments for given 
concatenation. 

sarSegmentSeqNum Index of current segment in 
concatenation. Starts with 1, maximum 
value 255. 

NOTE: See Retrieve Messages chapter for descriptions of ReceivedSms and 
ReceivedMms structures or consult javadoc. 

3.4.1 Install AXIS Message Receiver 

First you have to choose servlet container. In following text Apache Tomcat 
version 5 will be assumed, but the same should apply to any other servlet 



container. In web application which will receive messages add to web.xml file 
following: 
 

<listener> 

 <listener-class> 
  org.apache.axis.transport.http.AxisHTTPSessionListener 
 </listener-class> 

</listener> 

 

<servlet> 

 <servlet-name>AxisServlet</servlet-name> 

 <display-name>Apache-Axis Servlet</display-name> 

 <servlet-class> 
  org.apache.axis.transport.http.AxisServlet 
 </servlet-class> 

</servlet> 

 

<servlet-mapping> 

 <servlet-name>AxisServlet</servlet-name> 

 <url-pattern>/services/*</url-pattern> 

</servlet-mapping> 

 

<session-config> 

 <session-timeout>30</session-timeout> 

</session-config> 

 

<mime-mapping> 

 <extension>wsdl</extension> 

 <mime-type>text/xml</mime-type> 

</mime-mapping> 

 

<mime-mapping> 

 <extension>xsd</extension> 

 <mime-type>text/xml</mime-type> 

</mime-mapping> 

It will register AXIS servlet to listen on /services servlet path for incoming 
messages. Copy server-config.wsdd file to WEB-INF directory of your web 
application. File can be found in resource directory of mGw client library. You can 
also find web.xml example file in the same directory. Copy content of mGw library 
lib directory to yours web application WEB-INF/lib directory. All dependencies 
needed by mGw client can be found in this directory. 

Start your servlet container and check if installation was successful. Open 
http://<host>:<port>/<context>/services/SmsNotificationPort URL in 
your browser and you should see text on screen indicating AXIS service. 



3.4.2 Registering Message Listener 

Assuming you have implemented MessageListener2 interface the next step is to 
register your message listener. Listener is registered via 
registerMessageListener method on MessageManager2 interface. There are two 
methods for registering listeners, one that use default username/password pair 
for authentication and one where you can specify username/password pair for 
authentication. 

It is important to understand how messages are received and when and why 
username/password pair is used for authentication. 

• receiving SMS message 

The whole message containing text is received when request from mGw is 
accepted on client side. 

• receiving MMS message 

Only message reference is received when request from mGw is accepted on client 
side. To get content of MMS message client library must call mGw service with 
received reference to retrieve message content. When this call is made, 
username/password pair is used for authentication. Note that if MMS contains 
only single content part and this part is text, then text is pushed from server in 
notification and additional request from client to server to retrieve content is not 
required. 

To register listener you have to specify registration identifier that represents 
route (channel) over which message arrived. To receive messages delivered via 
any route (channel) use constant MessageManager2.REG_ID_ANY. 

String regId = MessageManager2.REG_ID_ANY; 

MessageListener2 listener = new YourMessageListenerImplementation(); 

manager.registerMessageListener(regId, listener); 

Multiple MessageListener2 instances can be registered with single 
MessageManager2Impl, with different registration ID. This way, client can use 
separate listener for messages with different short code. 

Note that all parameters provided in notification callbacks (ReceivedSms, 
ReceivedMms, DeliveryReport and ReceivedLongSmsSegment) also contain 
registrationId value. This way, single listener can be used to receive all 
messages and be processed by partner in some arbitrary way. 

Multiple MessageManager2Impl instances can be created in application, for 
instance if partner wants to communicate with multiple servers, hosted at 
different OPCOs. 

Note that single listener can be registered multiple times with single or multiple 
MessageManager2Impl instances, but each time with different registrationId. 
Client API will use registration ID value to route the request to appropriate 
listener. Registering another listener with same registration ID overwrites 
previous registration and new listener will receive callbacks for this registration 
ID. Registration ID is not scoped per message manager instance but should be 
unique in client API (i.e. in general case it's not possible to receive notifications 
from different operators with same registration ID). 

NOTE: See javadoc for more information about MessageListener2 interface and 
receiveMmsMessages methods on MessageManager2 interface. To find out valid 
registration identifier contact mGw administrator or your mobile operator contact person. 

  



4 CHARGING SERVICES 

To use charging services, instantiate ChargingManager2Impl. This is 
implementation of ChargingManager2 interface that uses SOAP to invoke mGw 
charging services. 

Use provided URL and username/password pair to instantiate 
ChargingManager2Impl. 

String url = <provided URL>; 

String user = <provided Username>; 

String pass = <provided Password>; 

ChargingManager2 manager = new ChargingManager2Impl(url, user, pass); 

4.1 Service Limitations 

ChargingManager2 interface provides many methods for charging funds to user. 
Not all methods have to be supported by your mobile operator. If unsupported 
method is called, mGw will throw exception that will be propagated to client. 

NOTE: To find out which methods are supported contact your mGw administrator or your 
mobile operator contact person. 

4.2 Charging Examples 
In following examples only commonly used methods by mobile operators will be 
shown. Thus only amount charging will be shown. Some parameters to methods 
can be used differently than mentioned, depending on mobile operator billing 
system capabilities. 

4.2.1 Charge Amount 

This is most simple example that will charge funds to user. Additional parameters 
(billingText and referenceCode) may be left empty if not desired by mobile 
operator or may be used for different purpose again depending on mobile 
operator. 

String user = <user>; 

BigDecimal amount = <amount>; 

String billingText = <text to appear on bill>; 

String referenceCode = <unique request identifier>; 

manager.chargeAmount(user, amount, billingText, referenceCode); 

4.2.2 Reserve, Commit or Release Charge 

More complex example involving amount reservation, sending message and 
commit or release of reservation depending on successful message delivery. 
Additional parameters have same restrictions or use as in simple charge amount 
example. 

String user = <user>; 

BigDecimal amount = <amount>; 

String billingText = <text to appear on bill>; 



String referenceCode = <unique request identifier>; 

Charging charging =  
 chargingManager.reserveAmount(user, amount, billingText); 

String[] destination = new String[] {user}; 

String originator = <originator>; 

SmsMessage sms = new SmsMessage(“sms message text”); 

MessageId mid =  
 messageManager.sendMessage( 
  sms, destination, originator, null, charging); 

NOTE: Notice usage of charging parameter when sending message. This will link charging 
information with sent message. 

chargingManager.chargeAmountReservation( 
 charging, amount, billingText, referenceCode); 

Or if message was not sent successfully. 

chargingManager.releaseAmountReservation(charging); 

For description of all others methods on ChargingManager2 interfaces please 
consult javadoc. 
  



5 LOCATION SERVICES 

To use location services, instantiate LocationManager2Impl. This is 
implementation of LocationManager2 interface that uses SOAP to call mGw 
location services. 

Use provided URL and username/password pair to instantiate 
LocationManager2Impl. 

String url = <provided URL>; 

String user = <provided Username>; 

String pass = <provided Password>; 

LocationManager2 manager = new LocationManager2Impl(url, user, pass); 

5.1 Finding User Location 

To find user location, call getLocation method. Requester parameter can be left 
empty. Effect of accuracy values on result depends on mobile operator 
infrastructure. Result of method call is location which contains user longitude, 
latitude, accuracy of result and time of result. 

String user = <user>; 

String requester = <requester>; 

Accuracy accuracy = Accuracy.MEDIUM; 

Location location = manager.getLocation(user, requester, accuracy); 

Accuracy Values 

Accuracy Value

Low accuracy hr.tis.mgw.client.location.Accuracy.LOW 

Medium accuracy hr.tis.mgw.client.location.Accuracy.MEDIUM 

High accuracy hr.tis.mgw.client.location.Accuracy.HIGH 

Location Properties 

Property Description

longitude User location longitude

latitude User location latitude

accuracy Accuracy of result values

time Time when measurement was made 

  



6 MANAGER EXCEPTIONS 

Every method in every manager throws exceptions. There is one root generic 
exception GatewayException which covers all different exceptions thrown. This 
way only one exception needs to be catched. If desired sub exceptions can be 
catched explicitly. To view all possible exceptions look at the 
hr.tis.mgw.client.exceptions package in javadoc. The exceptions correspond 
to ParlayX exceptions. For understanding of exceptions types and usage read 
ParlayX for web services manual. 

Usually Encountered Exceptions 

Exception Description

MServiceException Thrown when mGw is unable to process request. See 
exception message for reason. 

MPolicyException Thrown when authentication has failed. Check 
username/password pair. 

MRemoteException Thrown when remote call to mGw failed (network 
problem). 

GatewayException Generic root exception.

7 LOGGING 

Logging library used is Apache Jakarta Commons-Logging 
(http://jakarta.apache.org/commons/logging). Library is actually a wrapper 
around logging framework such as JDK's java.util.logging or Apache Log4J 
(http://logging.apache.org/log4j). Throughout the library logging is used 
extensively so be careful on level of logging used. We recommend INFO level 
since library was tested thoroughly and there is no need for you to test it again. It 
is also recommended to disable AXIS logging since it produce are lot of debug. In 
Log4J to set recommended logging level for library use following entries: 

log4j.logger.hr.tis.mgw.client = INFO 

log4j.logger.org.apache.axis = FATAL 

8 ADDITIONAL NOTES 

In library distribution you can find working samples that covers common usage of 
library. Please read README files in samples directory for instructions on how to 
use samples. 


